个人简介
陈梁,男,1991年生,博士,教授,硕导,中国化学会会员、美国佐治亚理工学院访问学者,应用化学教研室主任,“先进碳基功能材料”省重点实验室副主任;全球前2%顶尖科学家“年度影响力榜单”入选者(2022、2023年),湖南省科技人才托举工程托举对象(2022年),湖南省优秀青年基金获得者(2024年),中国科协优秀中外青年交流计划入选者(2019年),湖南省青年骨干教师,湖南省优秀研究生导师,岳阳市C类高层次人才(省级领军人才)、岳阳市专家协会“突出贡献专家”。主持国家级项目2项、省部级项目10余项;在Nano–Micro Letters、Energy Storage Materials、Green Chemistry、Food Chemistry、Chemical Engineering Science等材料、化学及化工类具有国际影响力期刊发表SCI论文80余篇(一作/通讯48篇),2篇为ESI高被引,被引1800余次,H指数27;申请国家专利24项(授权14项);出版英文专著1部;获湖南省自然科学二等奖1项(排2),湖南省自然科学优秀学术论文一等奖1项(排1),湖南省普通高校教师课堂教学竞赛三等奖1项(排1)校级教学成果二等奖1项(排3)和第五届国际电化学能源系统大会优秀墙报奖1项。作为第1指导教师指导学生获国家级大学生创新创业计划项目1项、省级大学生创新创业计划项目2项;指导学生获省级及以上各类竞赛一等奖1项、二等奖2项和三等奖3项;指导学生获湖南省优秀硕士毕业论文1篇(任雯晴,2024)、湖南省优秀毕业生(20届研究生:胡利英)等荣誉。
学习及教育经历
2012.09‒2017.06,湖南大学化学化工学院应用专业,博士(硕博连读),导师:旷亚非教授;
2008.09‒2012.06,河南科技大学化学化工学院化工专业,学士。
工作经历
2024.12‒至今,湖南理工学院化学化工学院,教授
2019.12‒2024.12,湖南理工学院化学化工学院,副教授,应化教研室主任,省重点实验室副主任
2020.01‒2021.12,美国佐治亚理工学院材料科学工程系,访问学者
2017.07‒2019.12,湖南理工学院化学化工学院,讲师
研究方向
1. 碳基功能材料与电化学储能(如锂/钠离子电池、锂硫电池、锌空气电池等)
2. 碳基功能材料与电化学催化(如氧还原、氧析出、氢析出等)
3. 碳基功能材料与电化学传感
4. 退役锂离子电池修复与再生利用
5. 金属腐蚀与防护
代表性教学科研项目
[1] 湖南省自然科学优秀青年项目,2024‒2026,主持,在研;
[2] 湖南省科技人才托举工程年轻优秀科技人才培养计划,2022‒2024,主持,在研;
[3] 湖南省自然科学基金面上项目,2023JJ30277,主持,在研;
[4] 湖南省教育厅重点项目, 2022‒2023,主持,结题;
[5] 国家自然科学基金青年项目,2019‒2021,主持,结题;
[6] 国家留学基金委出国留学项目,2020‒2021,主持,结题;
[7] 中国科协优秀中外青年交流计划项目,2020‒2021,主持,结题;
[8] 湖南省自然科学青年项目,2018‒2020,主持,结题;
[9] 湖南省教育厅优秀青年项目,2019‒2020,主持,结题;
[10] 高纯无水硫酸镁生产技术研发,横向项目,2018‒2019,105万元,主持,结题;
[11] 湖南省学位与研究生教学改革项目,2021‒2023,主持,结题;
[12] 教育部产学合作协同育人项目,2018‒2019,主持,结题;
近5年代表性论文及专著(一作/通讯作者)
[1] Direct regeneration of LiFePO4 cathode by inherent impurities in spent lithium−ion batteries, Journal of Colloid and Interface Science, 2025, 679, 586−597.
[2] Sulfur–vacancy engineering of Co9S8–x/Ti3C2Tx–MXene catalyst for efficient oxygen evolution reaction, Journal of Colloid and Interface Science, 2025, 683, 694−702.
[3] Dual–carbon–source electrospinning for hierarchical NiS/carbon fibers composites with vine-Like morphology toward enhanced lithium storage, Chemical Engineering Science, 2025, 305, 121157.
[4] Direct Regeneration of spent lithium−ion Battery cathodes: from theoretical study to production practice, Nano−Micro Letters, 2024, 16, 1−33.
[5] Non‒closed‒loop recycling strategies for spent lithium‒ion batteries: Current status and future prospects, Energy Storage Materials, 2024, 67, 103288.
[6] Directly upgrading spent graphite anodes to stable CuO/C anodes by utilizing inherent Cu impurities from spent lithium–ion batteries, Green Chemistry, 2024, 26, 6634−6642.
[7] Construction of N–doped carbon encapsulated Mn2O3/MnO heterojunction for enhanced lithium storage performance, Journal of Colloid And Interface Science, 2024, 665, 752–763.
[8] Construction of a self–reporting molecularly–imprinted electrochemical sensor based on CuHCF modified by rGNR–rGO for the detection of zearalenone, Food Chemistry, 2024, 448, 139154.
[9] Recycling of spent lithium–ion battery graphite anodes via a targeted repair scheme, Resources, Conservation & Recycling, 2024, 201, 107326.
[10] g‒C3N4‒assisted synthesis of ultrafine Mn2O3 nanoparticles embedded into N‒doped carbon for advanced lithium‒ion battery anode, Chemical Engineering Science, 2024, 285, 119626.
[11] Facile large–scale synthesis of 3D crumpled N, O co–doped graphene nanosheets and their electrochemical properties, International Journal of Hydrogen Energy, 2024, 53, 256–262.
[12] Crystalline/non−crystalline carbon co−modified strategy to construct N, S co−doped carbon layer wrapped Fe0.95S1.05/carbon nanotubes for enhanced lithium storage property, Acta Metallurgica Sinica (English Letters), 2024, DOI:10.1007/s40195-024-01776-z.
[13] 3D graphene nanosheets crosslinked core–shell FeS2@ N, S co−doped porous carbon for improved lithium/sodium storage performance, Acta Metallurgica Sinica (English Letters), 2024, 37, 1680−1688.
[14] Porous nitrogen−doped carbon nanosheets composite Fe3C synthesized by molten salt−mediated template method as efficient ORR catalyst for zinc−air batteries. Carbon Letters, 2024, DOI:10.1007/s42823-024-00802-5.
[15] Construction of AuNPs/reduced graphene nanoribbons co‒modified molecularly imprinted electrochemical sensor for the detection of zearalenone, Food Chemistry, 2023, 423, 136294.
[16] Self‒template synthesis of peapod‒like MnO@N‒doped hollow carbon nanotubes as an advanced anode for lithium‒ion batteries, Rare Metals, 2023, 42, 929–939.
[17] Salt–template assisted fabrication of Co3O4 nanodots anchored into 2D N–doped carbon nanosheets as an advanced anode for lithium–ion batteries, Journal of Alloys and Compounds, 2023, 951, 169976.
[18] A simple room–temperature acid capture strategy to controllably tune oxygen vacancy in Co3O4 for oxygen evolution reaction, Journal of Alloys and Compounds, 2023, 932, 167657.
[19] Direct pyrolysis to convert biomass to versatile 3D carbon nanotubes/mesoporous carbon architecture: conversion mechanism and electrochemical performance, Frontiers of Chemical Science and Engineering, 2023, 17, 679–690.
[20] Construction of high–loading 3D Co–N–C catalyst for oxygen reduction reaction in Zn–air batteries, Journal of Electroanalytical Chemistry, 2023, 935, 117316.
[21] Preparation of self–supporting Co3S4/S–rGO film catalyst for efficient oxygen evolution reaction. Carbon Letters, 2023, 33, 2087–2094.
[22] Dual–template synthesis of interconnected 3D hollow N–doped carbon network for electrochemical application, Carbon Letters, 2023, 33, 409–418.
[23] Flexible self–supporting metal–free N–doped graphene membrane as an electrocatalyst for oxygen evolution reaction, Applied Surface Science, 2022, 604, 154667.
[24] Oxygen vacancy assisted low–temperature synthesis of P–doped Co3O4 with enhanced activity towards oxygen evolution reaction, Journal of Alloys and Compounds, 2022, 894, 162038.
[25] Dopant–free edge–rich mesoporous carbon: understanding the role of intrinsic carbon defects towards oxygen reduction reaction, Journal of Electroanalytical Chemistry, 2022, 923, 116826.
[26] Etching engineering on controllable synthesis of etched N‒doped hierarchical porous carbon toward efficient oxygen reduction reaction in zinc‒air batteries, Materials Today Energy, 2021, 20, 100670.
[27] A facile self‒catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability. Journal of Materials Science & Technology, 2020, 44, 229-236.
[28] 3D N, S‒co‒doped carbon nanotubes/graphene/MnS ternary hybrid derived from Hummers' method for highly efficient oxygen reduction reaction, Materials Today Energy, 2020, 16, 100402.
[29] Au‒Cu nanoalloy/TiO2/MoS2 ternary hybrid with enhanced photocatalytic hydrogen production, Journal of Alloys and Compounds, 2020, 820, 153440.
[30] 专著:Heteroatoms−doped carbon nanomaterials for electrochemical application, ISBN:978‒620‒6‒77015‒2.
近5年代表性专利
[1] 陈梁,胡利英,周广峰,杨岚云,王溦,侯朝辉,一种废弃徐长卿药渣衍生制备非金属掺杂多孔碳的方法和应用,2023,专利号:ZL202211145997.0
[2] 陈梁,胡利英,任雯晴,王溦,尹红,黄军林,侯朝辉,一种自支撑型非金属掺杂石墨烯柔性膜电极的制备方法和应用,2023,授权公布号:ZL202111472021.X
[3] 陈梁,侯朝辉,许文苑,陈洋羊,尹红,任雯晴,胡利英,一种非金属掺杂碳/硫化亚铁复合物的制备方法,2022,专利号:ZL202110940196.2
[4] 陈梁,侯朝辉,许文苑,陈洋羊,徐晨曦,周民杰,何斌鸿,王溦,一种掺杂型碳/硫化锰复合材料制备方法,2021,专利号:ZL201910831133.6
欢迎对能源材料、光电催化、电池回收等方向感兴趣的学生加入课组读研,优秀学生可支持赴国内外知名高校读博深造!
联系方式 →→ 邮箱:clvilance@163.com; 微信:clvilance